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Abstract

Several investigations indicate that the Bidirectional Reflectance Distribution Function (BRDF) contains information that can be used to

complement spectral information for improved land cover classification accuracies. Prior studies on the addition of BRDF information to improve

land cover classifications have been conducted primarily at local or regional scales. Thus, the potential benefits of adding BRDF information to

improve global to continental scale land cover classification have not yet been explored. Here we examine the impact of multidirectional global

scale data from the first Polarization and Directionality of Earth Reflectances (POLDER) spacecraft instrument flown on the Advanced Earth

Observing Satellite (ADEOS-1) platform on overall classification accuracy and per-class accuracies for 15 land cover categories specified by the

International Geosphere Biosphere Programme (IGBP).

A set of 36,648 global training pixels (7�6 km spatial resolution) was used with a decision tree classifier to evaluate the performance of

classifying POLDER data with and without the inclusion of BRDF information. BRDF Fmetrics_ for the eight-month POLDER on ADEOS-1

archive (10/1996–06/1997) were developed that describe the temporal evolution of the BRDF as captured by a semi-empirical BRDF model. The

concept of BRDF Ffeature space_ is introduced and used to explore and exploit the bidirectional information content. The C5.0 decision tree

classifier was applied with a boosting option, with the temporal metrics for spectral albedo as input for a first test, and with spectral albedo and

BRDF metrics for a second test. Results were evaluated against 20 random subsets of the training data.

Examination of the BRDF feature space indicates that coarse scale BRDF coefficients from POLDER provide information on land cover that is

different from the spectral and temporal information of the imagery. The contribution of BRDF information to reducing classification errors is also

demonstrated: the addition of BRDF metrics reduces the mean, overall classification error rates by 3.15% (from 18.1% to 14.95% error) with

larger improvements for producer’s accuracies of individual classes such as Grasslands (+8.71%), Urban areas (+8.02%), and Wetlands (+7.82%).

User’s accuracies for the Urban (+7.42%) and Evergreen Broadleaf Forest (+6.70%) classes are also increased. The methodology and results are

widely applicable to current multidirectional satellite data from the Multi-angle Imaging Spectroradiometer (MISR), and to the next generation of

POLDER-like multi-directional instruments.

D 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Land cover and land use are principal factors, in both space

and time, controlling the cycling and exchange of carbon,

energy and water within, and between, the different Earth

systems. Thus, global land cover classifications are essential

for a variety of diagnostic and predictive models that simulate
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the functioning of the Earth systems and are useful for

investigating global change (Sellers et al., 1996; Townshend

et al., 1994). Global land cover classifications also simplify the

monitoring of natural or human-induced changes of land cover/

use and are important in simulations of the impact of such

changes on local and global processes (e.g. Bonan, 1997;

Bounoua et al., 2002). In addition, coarse scale land cover

classifications currently play an important role as ancillary data

for various parameter retrieval algorithms using data from the

Terra and Aqua satellite systems, and are expected to be used

by several of the algorithms of the future National Polar
t 100 (2006) 474 – 485
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Orbiting Environmental Satellite System (NPOESS) Prepara-

tory Project (NPP) and the NPOESS operational satellite

systems, to be launched later this decade and early next

decade, respectively.

Global scale land cover classifications derived from

Advanced Very High Resolution Radiometer (AVHRR) satel-

lite data have achieved accuracies between 70% and 90% for

up to 17 land cover types. Classifications using 8 km or coarser

resolutions yield accuracies over 80% (DeFries et al., 1995,

1998; Friedl & Brodley 1997; Hansen et al., 1996), and those

using 1 km resolution data yield accuracies near 70% (Hansen

et al., 2000; Scepan, 1999). These classification accuracies in

some cases have been determined from random samples of

unseen test cases taken from samples used to train the classifier

(DeFries et al., 1995, 1998; Friedl & Brodley, 1997; Hansen et

al., 2000). Thus, actual accuracies can be expected to be lower

when tested with independent validation data, as shown by

Friedl et al. (2000). The correct typing probability for the 1 km

IGBP-DIScover global land cover classification of Loveland

and Belward (1997), checked against such an independent

validation data set, was expected to reach 85%, but is in fact

67% (Scepan, 1999). The land cover product from the

MODerate Resolution Imaging Spectroradiometer (MODIS)

(Friedl et al., 2002; Strahler et al., 1999) is expected to have an

accuracy near 80%.

The limitations to achieving higher classification accuracies

discussed by DeFries et al. (1998), Loveland et al. (1999), and

Hansen et al. (2000), emphasize data quality of the input data

and the number and nature of the land cover classes of interest.

Artifacts of data processing, substantial radiometric noise,

geolocation errors, and the limited spectral coverage of systems

such as AVHRR inhibit the ability to separate spectrally similar

land cover classes. Many land cover types, especially at coarse

spatial scales, show as much intra-class variability as inter-class

spectral variability. This variability frequently exhibits multi-

modal distributions that cause serious difficulties for traditional

classifiers such as Maximum Likelihood Classifiers (MLC).

New non-parametric classifiers such as decision trees are

preferred to parametric classifiers for coarse resolution

applications because these do not assume normally distributed

input data, as a MLC does (Friedl & Brodley, 1997; Hansen et

al., 1996).

Improved classifications should also result from improved

processing of the input data such as atmospheric corrections

and may also benefit from mitigation of the non-Lambertian

behavior of terrestrial surfaces. The data currently available

from sensors such as MODIS, and the Visible/Infrared Imager/

Radiometer Suite (VIIRS) to be flown onboard NPP and

NPOESS, incorporate such corrections and (will) have

significantly superior radiometric performance and stability.

Additional spectral bands, particularly in the middle infrared

portion of the spectrum, and improved geolocation are also

expected to substantially benefit land cover classification

algorithms and any derived products.

Principal sources of confusion for global scale classifica-

tions are usually absent between large Fcore_ classes such as

forest and bare/sparsely vegetated (e.g. DeFries et al., 1998;
Han et al., 2004; Hansen & Reed, 2000). Confusion typically

occurs between surfaces that are similar spectrally and

temporally, such as different forest types (e.g. Deciduous

Broadleaf Forest and Mixed Forest), Wooded Grasslands and

Woodlands, Open and Closed Shrublands, and/or Grasslands

and Croplands. In addition, other classes such as Urban areas

and Wetlands are poorly characterized from visible/infrared

satellite data (Han et al., 2004; Scepan, 1999).

Ancillary information, or orthogonal information such as

surface structure or polarization, may be useful for reducing

errors currently encountered with the use of spectral/temporal

data alone. Investigations of the bidirectional reflectance

distribution function (BRDF) suggest that multi-angular

signatures contain information on land cover surface structure

unavailable from nadir or near-nadir spectral signatures

(Bicheron & Leroy, 2000; Deering et al., 1999; Irons et al.,

1992; Kimes et al., 1985; Kriebel, 1978; Pinty et al., 2002;

Walthall & Brown de Colstoun, 1997). Most multi-angular

studies have been carried out at the local, plot-level scale and

thus have not examined the variability of BRDF across

landscapes at coarse spatial scales. It is suggested that the

vertical structure of global land cover types, and the associated

shadowing of canopy or surface components caused by this

vertical structure are associated with land cover and when

parameterized by simple semi-empirical BRDF models can be

used to improve global land cover classifications. The research

presented here addresses information content of global scale

BRDF signatures with respect to land cover type. The potential

of global BRDF patterns as an aid to the discrimination of land

cover types is evaluated using eight months of global multi-

directional data acquired by the first Polarization and Direc-

tionality of Earth Reflectances (POLDER) satellite, processed

and provided by the Centre National d’Études Spatiales

(CNES), Toulouse, France. The coefficients of the semi-

empirical Roujean et al. (1992) BRDF kernel model are used

as a basis for multi-directional Fmetrics_ describing the

evolution of the BRDF for 15 IGBP land cover types for the

entire eight-month POLDER archive. By assessing the spectral

and temporal POLDER data alone, and then including the

BRDF metrics along with the spectral and temporal data in a

second test, the contributions of BRDF information to global

land cover classifications in terms of overall, and individual

IGBP class accuracy, are examined. This analysis is facilitated

by the use of a commercially available non-parametric decision

tree classifier called C5.0 (Quinlan, 1993).

2. Background

2.1. Global land cover classifications and decision trees

Current global land cover products generated from MODIS

data (Friedl et al., 2002) follow the heritage of previous work

with AVHRR data (DeFries et al., 1998; Hansen et al., 2000),

particularly in terms of the decision tree classifiers and the use

of training data derived from Landsat Thematic Mapper (TM)

and/or Enhanced Thematic Mapper Plus (ETM+). A decision

tree classifier approach following this AVHRR/MODIS heri-
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tage is currently planned for the operational land cover

products to be produced from the VIIRS sensor onboard NPP

and NPOESS (Brown de Colstoun et al., 2000). Decision trees

are becoming popular for these coarse-scale applications

because they do not make any implicit assumptions about

normal distributions in the training data, as some more

traditional classifiers would. The flexibility of decision trees

for handling input data in the form of continuous or categorical

variables, and ancillary and/or missing data, and the improve-

ments in accuracy shown with the use of ensemble classifica-

tion techniques such as boosting (DeFries & Chan, 2000; Friedl

et al., 1999) further supports their use. The benefits of decision

trees have also been demonstrated with high-resolution multi-

temporal Landsat ETM+ data (Brown de Colstoun et al., 2003).

An excellent review of the methods used to construct decision

trees is provided in Safavian and Landgrebe (1991). Friedl and

Brodley (1997) discuss many of these methods within the

context of research with remotely sensed data.

The current MODIS land cover algorithm inputs are 16-day

composites for the individual MODIS land bands and the

Enhanced Vegetation Index (EVI) (Huete et al., 2002) for an

entire year. All the input data are adjusted to a nadir-viewing

angle to reduce the effect of varying illumination and viewing

geometries (Friedl et al., 2002). The use of temporal or

phenological metrics describing the temporal evolution of the

Normalized Difference Vegetation Index (NDVI) for various

cover types was proposed by Lloyd (1990) as a means of

resolving different cover types. DeFries et al. (1995, 1998) and

Hansen et al. (2000) adopted the use of additional yearly

metrics, including NDVI, obtained from the individual spectral

bands of AVHRR. This provided greater information content

and generally enhanced the separation of cover types which

otherwise had similar NDVI. DeFries et al. (1998) tested 24

temporal metrics as input to their decision tree algorithm that

were produced by extracting the yearly maximum and

minimum for NDVI and the 5 AVHRR spectral bands, and

calculating the yearly mean and amplitude (i.e. Max.�Min.).

The yearly metrics provided significant data reduction while

also ensuring that the training data from the northern and

southern hemispheres had the same seasonal phase. It should

be noted that land cover types exhibiting similar NDVI

temporal signals, yet with different canopy architectures, will

still be difficult to separate using only near-nadir signatures.

Our goal here is to exploit the potentially unique land cover

specific information contained in the BRDF to improve the

separation of cover types which may otherwise be currently

difficult to separate.

2.2. Exploitation of BRDF information

The BRDF of vegetation and soils reveals anisotropy that is

spectrally, temporally, and spatially variable (Bicheron &

Leroy, 2000; Brown de Colstoun et al., 1996; Deering et al.,

1999; Irons et al., 1992; Kimes, 1983; Pinty et al., 2002;

Walthall & Brown de Colstoun, 1997). Two processes are

generally accepted to control the observed bidirectional signal

of terrestrial surfaces (Roujean et al., 1992). The first is volume
scattering which describes the interaction of energy with a

medium composed of facets oriented in many different

directions such as leaves and/or soil particles. The second,

geometric scattering, deals with the variability of the BRDF

that is introduced by shadowing of scene components and by

viewing different proportions of these components as the view

angle of the sensor changes (Hapke et al., 1996; Kimes, 1983;

Roujean et al., 1992).

Barnsley (1994), and particularly Barnsley et al. (1997),

explored the information content and dimensionality of

multiple view angle imagery by showing the potential for

discriminating several agricultural cover types based on

bidirectional information alone. Principal components analyses

showed that, even with fairly limited data, the directional

information appears to provide up to two more degrees of

freedom for land cover separation beyond those available from

nadir spectral data alone.

The coefficients of simple BRDF models such those of

Roujean et al. (1992) have been used in studies by Braswell et

al. (1996), Roujean et al. (1997), and Walthall (1997), to show

the potential of utilizing the angular signal described by the

model coefficients to retrieve various biophysical surface

parameters from AVHRR data, airborne BRDF data, and

modeled values. Studies by Brown de Colstoun et al. (1996)

and Walthall and Brown de Colstoun (1997) further suggest

that the BRDF at the landscape level, as described by the three

coefficients of the Walthall et al. (1985) model, may contain

land cover specific information beyond the spectral domain of

remote sensing which may be useful in discriminating land

cover types. Wu et al. (1995) also showed bidirectional

reflectance distributions to be strongly dependent on land

cover at the regional scale. Bicheron and Leroy (2000) confirm

from global POLDER data that the form of the BRDF for

various cover types is different and that it varies with season.

Finally, the enhanced discrimination and improvement in land

cover classifications provided by bidirectional information has

been demonstrated for sub-boreal and boreal land cover types

by Abuelgasim et al. (1996) and Bicheron et al. (1997). The

work of Bicheron et al. (1997) and Vanderbilt et al. (1997)

showed that it is possible to discriminate wetlands from non-

wetlands classes such as grasslands or forests using the strong

specular reflection of water. Similarly, Leroy and Bréon (1996)

found that rice paddies exhibit this same extreme anisotropy

because of water and thus may be distinguishable from other

crop types. Because of the vertical and geometric structure of

buildings and other man-made structures, the BRDF may also

provide information on urban and developed areas beyond

what is available from near-nadir remote sensing.

Use of BRDF information may help improve the separation

of classes that are currently difficult to separate. For example,

in DeFries et al. (1995) and DeFries et al. (1998), land cover

classes such as grasslands and croplands, woodlands and

deciduous broadleaf forests, and closed bushland/shrublands

and open shrublands have lower classification accuracies than

most other classes because of substantial inter-class confusion.

Land cover classes such as these which show similar spectral

and/or temporal responses could be further distinguished by the
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level of anisotropy they produce, as noted by Kriebel (1978),

Kimes et al. (1985) and Pinty et al. (2002). Here, the height of

tree canopies, and/or the degree of canopy closure, factors that

modify the shadowing regime within each respective canopy,

would again provide land cover information that could be

measured from their BRDF. More open canopies would be

expected to exhibit stronger anisotropy due to background or

herbaceous layer reflectances than closed ones and this effect

would be quantifiable in the shape of the BRDF. Finally, the

use of BRDF information may further enhance classification of

land cover classes that are already well characterized. This

enhancement has already been shown for broadleaf, needleleaf,

and other forested cover types (Abuelgasim et al., 1996;

Bicheron et al., 1997).

3. Data and methods

The POLDER satellite system (Deschamps et al., 1994) can

provide observations of a single target from up to 14 different

directions during a single orbit. Over a month POLDER can

provide, depending on latitude, measurements from 400+

different directions with good sampling along the principal

plane of the sun and from a variety of azimuthal directions. The

first POLDER instrument was launched in August 1996

onboard the Japanese Advanced Earth Observing Satellite

(ADEOS-1) platform, with a 10:30 AM Equator crossing time.

The ADEOS-1 spacecraft ceased to transmit at the end of June

1997, allowing only eight months of useable global coverage to

be acquired, from about the end of October 1996 through June

1997. Our assessment of the eight-month NDVI data from

POLDER showed that, with the exception of some areas at

very high latitudes, the POLDER archive provided a nearly

complete annual growth cycle for most of the globe.

3.1. POLDER instrument and data processing

The POLDER instrument uses a unique design based on a

rectangular Charged Coupled Device (CCD) detector array, a

rotating filter wheel carrying spectral and polarized filters, and a

wide field of view lens (Bicheron & Leroy, 2000; Deschamps et

al., 1994; Leroy et al., 1997). Through this lens, the field of view

imaged by the CCD array is T43- along track and T51- across
track (2200 km swath width), leading to view zenith angles of

T50- and T61- in the along and cross track directions. The

POLDER pixel is 6 by 7 km at nadir, growing by approximately

21% out to a viewing angle of 60- (Deschamps et al., 1994).

Multi-spectral images or Fsnapshots_ for 15 spectral bands

are acquired every 19.6 s during one orbit, with substantial

overlap between successive images along-track. This allows a

particular point on the Earth to be observed from up to 14

different viewing directions during each satellite overpass.

Successive orbits provide further looks of the same point from

different azimuthal orientations, allowing a more complete

sampling of the surface BRDF than available from other

sensors such as AVHRR and/or MODIS.

Radiometrically corrected and geocoded top-of-atmosphere

spectral reflectances for each image on an equal area sinusoidal
Earth grid, or FLevel 1_ data, form the basis for the derivation

of further POLDER products, such as FLevel 2_ products

processed for single POLDER orbits, and FLevel 3_ global

products, produced from multiple dates of POLDER acquisi-

tions (Leroy et al., 1997). Within this data processing stream,

the Level 1 data for the spectral bands centered at 443, 670,

765, 865 and 910 nm are screened for clouds, and corrections

are applied for gaseous absorption, stratospheric aerosols, and

Rayleigh scattering. Because the POLDER instrument does not

carry thermal bands, the cloud screening is performed by using

various tests aimed at detecting different types of clouds (Leroy

et al., 1997). Even though tropospheric aerosols are retrieved

directly from POLDER data, a correction for these aerosols

was not yet implemented on these data because of varying

confidence intervals of these retrievals (Leroy et al., 1997).

Aerosol optical thickness estimates retrieved with sufficient

confidence were used to screen pixels with very large aerosol

loadings, or with optical thicknesses at 865 nm greater than 0.3.

The compositing of Level 2 single orbit data into 30-day

global fields is not done using traditional maximum value

compositing, as is typically done with AVHRR data, but rather

by accumulating cloud-free atmospherically corrected surface

reflectances that provide a sampling of the surface BRDF

obtained from a multitude of viewing directions (Leroy et al.,

1997). For periods of 30 days each centered on the 5th, 15th,

and 25th day of each month, all cloud-free reflectances are

used to derive bidirectional coefficients on a per-pixel basis. As

described by Leroy et al. (1997), the objectives of this process

are to obtain a sufficient number of observations for the

Roujean et al. (1992) BRDF model to be properly fitted to the

data, and also to reduce any errors introduced by sub-pixel

clouds or improper cloud detection and/or atmospheric correc-

tions. The derivation of the ki coefficients of the Roujean et al.

(1992) model (see Section 3.2 below) proceeds as follows:

first, a linear regression of surface reflectances as a function of

viewing angle is performed. Any retrieved surface reflectance

whose distance from the regression line is greater than twice

the root mean square error of the regression is discarded. Third,

a second regression is performed using the remaining

observations to derive the k0, k1, and k2 coefficients of the

Roujean et al. (1992) model. These coefficients are then used to

calculate spectral hemispherical reflectances by integration

over all view zenith and azimuth directions. The NDVI is

calculated using the spectral hemispherical reflectances at 670

and 865 nm. For the research reported here, the entire eight-

month archive of Level 3 NDVI, albedos and BRDF

coefficients from POLDER was acquired directly from the

CNES in Toulouse, France. Each global data layer was

reprojected into a Goode’s Homolosine projection using

software developed specifically for POLDER by the Labor-

atoire d’Optique Atmospherique at the Université de Lille,

France.

3.2. Roujean et al. (1992) BRDF model

The selection of a BRDF model for global applications is

difficult because most BRDF models cannot always provide a
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good statistical fit to all BRDF shapes while also providing a

strong linkage with the guiding physical principles of radiative

transfer. The choice of the Roujean et al. (1992) model for the

research here was made because: (1) the coefficients have a

physical basis for most surface types and BRDF patterns, (2)

the model fits a wide variety of BRDF shapes and has been

validated over both heterogeneous and homogeneous surfaces

(Roujean et al., 1992), (3) the model can be fitted even when

particular viewing directions may be missing, such as when

clouds are present (Leroy & Roujean, 1994), (4) when

integrated over the viewing hemisphere, the accuracies of the

retrieved albedos are comparable or better than many of the

other models (Privette et al., 1997). Other issues related to the

ease of implementation at the global scale are also discussed by

Leroy et al. (1997), particularly in terms of the global POLDER

data processing system.

The Roujean et al. (1992) model was originally developed

to correct satellite imagery for bidirectional effects. Working

from the basic form of the Walthall et al. (1985) model, their

original assumption was that the bidirectional reflectance of

most terrestrial surfaces as a function of the solar zenith angle

hs, view zenith angle hv, and relative azimuth angle /, or q(hs,
hv, /), could be described by a linear combination of two

analytic functions f1(hs, hv, /), and f2(hs, hv, /) such that:

q hs; hv;/ð Þ ¼ k0 þ k1f1 hs; hv;/ð Þ þ k2f2 hs; hv;/ð Þ; ð1Þ

where k0, k1, and k2 are coefficients which describe the

magnitude of the reflectance, and the importance of geometric

and volume scattering effects, respectively.

The f1 function, describing the geometric scattering com-

ponent of the BRDF and the general contribution of shadowing

to the BRDF shape, was modeled by assuming that the surface

is covered with brick like protrusions with a length much larger

than either their width or height. Roujean et al. (1992)

described this function as:

f1 hs; hv;/ð Þ ¼ 1

2p
p � /ð Þcos/ þ sin/½ �tanhstanhv

� 1

p
ðtanhs þ tanhv

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanh2

s þ tanh2
v � 2tanhstanhvcos/

q
Þ: ð2Þ

The volume scattering component, f2, was calculated from

consideration of the radiative transfer of energy within a

homogeneous turbid medium composed of randomly oriented

facets such as leaves or soil particles. f2 was defined as:

f2 hs; hv;/ð Þ ¼ 4

3p
1

coshs þ coshv

p
2
� n

��
cosn þ sinn

ih

� 1

3
; ð3Þ

where n is the phase angle and is related to hv, hs and / by:

cosn ¼ coshscoshv þ sinhssinhvcos/: ð4Þ

The retrieval of the ki coefficients is performed by

regression between the measured reflectances and the modeled
reflectances calculated from Eqs. (1)–(3), with k0 representing

the reflectance at nadir with an overhead sun (Roujean et al.,

1992).

By combining these two functions in Eq. (1), Roujean et al.

(1992) were able to successfully fit their model to a wide

variety of field measured BRDF surfaces from bare soils to

densely vegetated canopies. Their analyses of 11 different land

cover types showed that, in general, the k2 coefficient was

larger than the k1 coefficient, indicating a dominance of

volume scattering over geometric scattering effects for most

cover types in both the red and near-infrared. Also, the general

magnitude of both coefficients was larger for the near infrared

than for the red portion of the electromagnetic spectrum,

indicating a possible correlation of the retrieved coefficients

with the spectral information. Finally, for some cover types, the

retrieved k1 coefficients were negative, and therefore

Funphysical,_ according to Roujean et al. (1992). As is

discussed in Leroy et al. (1997), the physics used by Roujean

et al. (1992) did not adequately describe all possible surfaces,

including those that exhibit specular reflection, and which may

be one origin of the negative coefficients. However, in a purely

statistical sense, the model will still fit the BRDF shapes

appropriately in many cases, but the physical meaning of the

coefficients may be lost or at least unclear. We found many

negative model coefficients in the global POLDER data,

particularly in areas with or near snow and/or water. Because

the land cover classification algorithms are based primarily on

statistical or pattern recognition principles, these negative

coefficients were not considered particularly problematic for

our analyses and could actually turn out to be beneficial to the

classifications.

3.3. Global scale training data and derivation of BRDF metrics

The type of analysis we present here would have been

impossible without the type of global scale training data we

were able to utilize and which we co-registered to the global

POLDER data. While global training sets are currently being

developed and used as a part of the MODIS land cover product

effort (Friedl et al., 2002), these are not yet available to the

general public. The only currently available global training data

set is that developed and used by DeFries et al. (1998) at 8 km

spatial resolution, augmented by Hansen et al. (2000) for their

1 km land cover classification (http://www.geog.umd.edu/

landcover/global-cover.html).

The process of deriving coarse scale training data has been

described by DeFries et al. (1998) and Hansen et al. (2000).

Their approach is based on the careful interpretation of over

150 Landsat Multi-Spectral Scanner (MSS) and TM imagery

and then their co-registration to the 8 and 1 km AVHRR data.

The Landsat scenes were selected in areas where three well-

known classification products agreed that the cover type is

present (DeFries & Townshend, 1994) and then re-projected

into the Goode’s Interrupted Homolosine projection used by

both the 8 km Pathfinder AVHRR Land (PAL) data (James &

Kalluri, 1994) and the 1 km global AVHRR data (Eidenshink

& Faundeen, 1994). The Landsat data were then co-registered

http://www.geog.umd.edu/landcover/global-cover.html


Table 1

Number of global training pixels used for POLDER classification analyses

IGBP class name Number of training samples

1) Evergreen Needleleaf Forests (ENeF) 1663

2) Evergreen Broadleaf Forests (EBrF) 4316

3) Deciduous Needleleaf Forests (DNeF) 482

4) Deciduous Broadleaf Forest (DBrF) 1948

5) Mixed Forests (MixF) 1701

6) Closed Shrublands (ClSh) 1330

7) Open Shrublands (OpSh) 3011

8) Woody Savannas (WSav) 4016

9) Savannas (Savn) 1818

10) Grasslands (Gras) 3971

11) Permanent Wetlands (Wtld) 592

12) Croplands (Crop) 6482

13) Urban/Built-Up (Urbn) 201

15) Snow and Ice (Snow) 1489

16) Barren (Bare) 3628

TOTAL 36648

Note that IGBP Classes 14 (Croplands/Natural Vegetation Mosaic) and 17

(Water Bodies) have been omitted. Class abbreviations are used in other tables

and figures in the text.
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to both these global data sets by using a cross-correlation

technique, where the highest degree of agreement between the

NDVI of the Landsat data and the AVHRR data was found by

‘‘floating’’ the Landsat data over the AVHRR data (DeFries et

al., 1998).

Large homogeneous areas with the land cover type of

interest were delineated directly in each scene using ancillary

data such as regional and local maps, and investigator

knowledge of the area. For more heterogeneous areas, a

supervised classification using a decision tree was used to

identify the cover type of interest in the scene (DeFries et al.,

1998; Hansen et al., 2000). These data were then Fdegraded_ to
the spatial resolution of the AVHRR data sets. The identifica-

tion of training pixels in the coarse scale data was made using

the following rationale. For homogeneous scenes, if 100% of

the pixels (90% in some rare cases) in the Landsat data were

identified as the cover type on the coarse data then these were

selected for training. For heterogeneous scenes, coarse pixels

containing 90% (80% in rare cases) of the cover type identified

in the Landsat data were selected. Hansen et al. (2000)

extracted every fifth pixel from a full resolution 1 km training

layer derived as above from pixels which contained 100% of

the land cover type present in the Landsat data. The use of this

reduced training set was due to the large data storage and

computational requirements that were encountered when

working with the full resolution 1 km global data.

Because the University of Maryland (UMD) training set did

not contain the full set of classes as specified by the IGBP, we

relabeled a small number of the training data from Hansen et al.

(2000) into the IGBP Permanent Wetlands class (e.g. Ever-

glades, Louisiana Swamps) (Brown de Colstoun, 2001). Other

wetlands training data were delineated directly on the AVHRR

data in regions with known large wetlands areas (e.g. Pantanal

in Brazil, Okavango Delta in Africa, Russian wetlands east of

the Urals). Urban areas were also delineated in this fashion for

large urban complexes throughout the world (e.g. Los Angeles,

Moscow, Beijing). Snow and ice training data were selected

from large ice caps and/or glaciers in Greenland, Alaska, and

Iceland. The IGBP Croplands/Natural Vegetation Mosaic class,

which is problematic particularly in terms of poor accuracy (see

Scepan, 1999), could have been modeled from a mixture of the

other classes and/or specifically trained for during our analysis

but we did not feel that a mosaic class at this spatial scale

would necessarily add any new or interesting information to

our analyses.

A set of 39,595 training pixels produced as described above

for all IGBP classes except the Croplands/Natural Vegetation

Mosaic class was then co-registered to the 6 by 7 km resolution

POLDER data in the Goode’s projection, yielding a potential

training set of 37,015 POLDER pixels at that resolution. The

values of NDVI, spectral albedos for 443, 670, 765, and 865

nm, and the k0, k1, and k2 coefficients for each band for each of

these 37,015 pixels were extracted for each 30-day period in

the eight-month archive. This entire data set was composed of

24 30-day periods for each parameter, for a total of 336 global

layers, and provided a nearly complete annual growth cycle for

most training pixels, with the exception of those at very high
latitudes. Out of the 37,015 training pixels, 367 were removed

because they did not contain any retrievals over the entire

measurement period. Table 1 shows the number of training

pixels per IGBP land cover class for the remaining 36,648

pixels used for the analyses here.

The final step in the creation of the POLDER training data

involved the development of metrics broadly describing the

annual or temporal evolution of NDVI, spectral albedo, and the

BRDF coefficients. For this, the maximum, minimum, mean

and amplitude of each parameter over the eight-month record

were extracted, as suggested by the work of DeFries et al.

(1998). This was done both as a data reduction measure but

also to ensure that training pixels for the same class in both the

northern and southern hemispheres were in phase with each

other. A total of 68 metrics were derived in this fashion from

the 336 original layers with 20 metrics describing the NDVI

and spectral albedo for the 443, 670, 765, and 865 nm bands.

The metrics for the k0 Roujean et al. (1992) model coefficient

(nadir reflectance for overhead sun) for the four bands were not

used because the spectral information was already present in

the spectral albedo for the same four bands. Nonetheless, the

32 BRDF metrics for the k1 and k2 coefficients exemplify the

large amount of potentially useful information provided by the

BRDF in addition to the NDVI and spectral albedo informa-

tion. These data were all used as input to the C5.0 classifier.

3.4. C5.0 decision tree classifier

The commercially available decision tree C5.0, the succes-

sor of the C4.5 program, (Quinlan, 1993) offered a tested,

robust and state-of-the-art classifier with a simplicity in testing

not duplicated with other classifiers. The use of boosting was

also appealing from previous work with ensemble classifiers

(Brown de Colstoun, 2001; Brown de Colstoun et al., 2000).

Decision tree classifiers successively partition the input data

into more and more homogeneous subsets by producing



Fig. 1. Near-infrared color-composite image of Australia generated from

POLDER data accumulated from November 1st to November 30th 1996. The

k0 coefficient of the Roujean et al. (1992) model POLDER bands at 865, 670

and 443 nm coded in red, green and blue, respectively.
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optimal rules which minimize the error rates in the branches of

the tree (Safavian & Landgrebe, 1991; Weiss & Kulikowski,

1991). Typically, the tree finds decisions that fit nearly every

case in the training data correctly (i.e. ‘‘overfitting’’) and

branches or leaves with higher error rates have to be Fpruned_
back to produce a final output that is less complex yet has

superior predictive capabilities (Quinlan, 1999). Each final leaf

is then the result of following a set of mutually exclusive

decision rules down the tree. C5.0 contains two automated

methods for pruning based on user-specified parameters that

describe the minimum number of cases that must follow each

of the branches of a tree and/or the confidence level used to

calculate the predicted error rate at each leaf, branch and/or

sub-tree (Quinlan, 1993, 1999).

A series of classifiers such as decision trees, termed an

ensemble, can also be combined to produce higher classifica-

tion accuracies than any one of the particular classifiers.

Ensemble classifier techniques such as boosting, where a series

of decision trees is created in an iterative fashion with each

successive tree focusing on the errors of the previous tree, or

those instances that are most difficult to classify, and then

produce a decision tree from majority voting, have been shown

to produce improved results over standard decision trees

(DeFries & Chan, 2000; Friedl et al., 1999).

The contribution of the additional BRDF data to global

classifications was examined by running the C5.0 decision tree

classifier using only the NDVI and albedo metrics as input in a

first test, and then the NDVI, albedo, and BRDF coefficients in

a second, and analyzing the differences in results for both data

sets, both in terms of overall accuracy and per-class user’s and

producer’s accuracies (Congalton & Green, 1999). The 36,648

training points were randomly divided into 20 equal-sized

training and testing blocks, and C5.0 was run using a boosting

mode and fairly severe pruning parameters determined from

previous work with global AVHRR data (Brown de Colstoun,

2001). With this random training/testing technique, 50% of the

data are used to generate a decision tree and the results are

evaluated using the 50% testing samples that were kept

separate from the tree-building process. This is repeated 20

times (i.e. number of train/test blocks). While this provides a

somewhat optimistic estimate of the overall classifier accuracy,

it does so for all tests carried out in our analyses, with and

without the BRDF metrics. All results given below are

averages and standard deviations in classification accuracies

and/or errors for all 20 training and testing blocks.

4. Results and discussion

4.1. Analysis of global scale BRDF model coefficients

Fig. 1 shows a standard near-infrared color-composite for

Australia generated from an accumulation of POLDER data

over the month of November 1996. The evergreen forests near

the coast in both southeast and northern Australia are clearly

visible. Areas of Croplands to the southwest and southeast are

also visible, as well as a large bright area with little or no

vegetation in the center of the continent (Simpson Desert). A
large portion of the country, particularly trending towards the

interior, contains Woodlands and Shrublands of varying tree

densities and canopy cover, seen on Fig. 1 as shades of light

red to yellow.

The data shown as Fig. 2 are from the same period as those

used for Fig. 1 but in this case we have combined the k0, k1,

and k2 coefficients of the Roujean et al. (1992) model for the

POLDER red band (670 nm) as red, green and blue. For Fig. 2,

we find areas with more important volumetric effects at 670 nm

in different shades of blue (e.g. dense broadleaf forests) while

those with more important geometric effects (Woodlands and/

or Shrublands) in shades of green and/or cyan. Subtle trends of

geometric scattering possibly related to canopy density are also

seen in the transition from the more densely forested east and

southeast towards the interior Woodlands, and Shrublands and

Grasslands.

The concept of combining BRDF model coefficients into

color-composites is not new (Barnsley et al., 1997; Leroy et al.,

1997). What we highlight here, particularly at the continental

scale with the POLDER data, is how different the BRDF

information is from more traditional information previously

used for remotely sensed studies of land cover. Land cover

patterns related to leaf chlorophyll, leaf area index, phenology,

etc., are seen in Fig. 1 while in Fig. 2 we see a completely

different perspective of Australia more in terms of canopy

structure, geometry and density. While there are some

correlations between the information in Figs. 1 and 2, and

some of the land cover-specific information yet remains to be

fully elucidated, these images do highlight the potential

information that is available beyond the spectral domain, and

which could be used for global land cover classifications.

Fig. 3a and b show the mean values for the Fmaximum k1_
and Fmaximum k2_ metrics for each IGBP land cover type and

for the 670 and 865 nm POLDER bands. The large standard

deviations for all classes are indicative of a rather large amount

of overlap between all classes. However, it must be borne in
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Fig. 3. Mean (a) k1 and (b) k2 coefficients for all training pixels in each of 15

IGBP land cover categories for POLDER bands at 670 and 865 nm. These are

the averages for the maximum values for these coefficients over the 8-month

POLDER record. Error bars represent T1 standard deviations. Only the error

bars for 865 nm are shown for clarity and are similar to those at 670 nm.

Fig. 2. Color composite from the same November 1996 POLDER data used for

Fig. 1 but here the k0, k1, and k2 coefficients of the Roujean et al. (1992) model

for the POLDER red band (670 nm) are coded in red, green and blue. This

image highlights the type of independent surface structure information

available from BRDF coefficients.
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mind that these training data are global, and as such are

typically multi-modal in feature space, so that measures of

central tendency are shown here to examine very broad patterns

in the data. Moreover, a classifier such as a decision tree will be

able to exploit areas of class overlap for classification as

opposed to an MLC classifier which depends on per class

statistics (Weiss & Kulikowski, 1991).

The coefficients for the 670 nm band presented as Fig. 3a

generally show some larger values for the two shrublands and

woodlands categories than for the forests classes, indicating

that, as expected, the geometric scattering component is more

important for these cover types. For this same coefficient, the

Urban class also shows larger coefficients than the Bare

category, implying that the geometric structure of this class

may still be captured at this spatial scale. The k1 coefficients for

the near-infrared band are generally larger for forests than most

other classes except Grasslands and Urban, indicating the

relative importance of the shadowing effect for these dense

canopies at this particular wavelength. It is interesting to note

that the Wetlands category has generally smaller k1 values than

the other vegetated classes. Closer inspection of this class

revealed many more negative coefficients than any other class,

pointing out that the Roujean et al. (1992) could yield negative

coefficients because of specular reflection. This same type of

pattern was seen in many cases for the Snow category and is

entirely consistent with the patterns observed for these classes

by Bicheron and Leroy (2000) from global POLDER data. The

large k1 values found for the Grassland class for both bands run

counter to expectations because the absence of trees and/or

shrubs should decrease the geometric component of the BRDF

in theory. From a classification standpoint, however, it is

encouraging that the Grassland class shows different general

patterns that either the Croplands or Wooded Grasslands

categories because this may allow the confusion typically seen

between these classes to be decreased.
The Fmaximum k2_ metric for the 670 nm band shows no

real trends across principal land cover core groups such as

Forests, Woodlands and Shrublands, again with larger values

being found on average for the Grasslands class. Larger values

for this class are closer to expectations for this volumetric

scattering parameter. For the 865 nm band, a decreasing trend

with decreasing canopy density is apparent from the Evergreen

Broadleaf Forests to the Woodlands, Wooded Grasslands,

Closed Shrublands, Open Shrublands, and finally Bare classes.

For these classes, this trend can be justified by the decreasing

importance of volume scattering as the canopy density is

decreased. Higher average values are found for the Grasslands,

Croplands and Wetlands classes. For the first two classes, a

higher volumetric scattering component is expected because

these cover types have been typically modeled as turbid media

(e.g. Verhoef, 1984). Higher values for the Wetlands category

may be justified because these cover types are composed of

water and either forests or grasses, and these cover types also

show higher maximum k2 values. Finally, smaller values

found for the Evergreen and Deciduous Needleleaf Forest

categories are attributed to the presence of snow because no



Table 2

Mean overall classification accuracies for 20 random training/testing blocks

using POLDER data both with and without BRDF metrics

50% training blocks 50% testing blocks

No BRDF (20 metrics) 91.20% (T0.18) 81.90% (T0.24)

BRDF (52 metrics) 95.31% (T0.22) 85.05% (T0.34)
Difference 4.11% (T0.29) 3.15% (T0.29)

Standard deviations for the 20 trees are shown in parentheses. Mean differences

in classification accuracies for both methods are also shown.
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attempt was made to mask out snow in the production of the

metrics.

Examination of general statistics for all metrics, including

NDVI, spectral albedos and BRDF coefficients, reveals general

trends that are consistent with previously published data from

field to global scales (Bicheron & Leroy, 2000; Roujean et al.,

1992). The albedo and NDVI trends are consistent with

expected patterns for vegetated, bare, and snow-covered

terrestrial surfaces. For the BRDF metrics, the k2 coefficients

are much larger than the k1 coefficients for all bands, as per

Roujean et al. (1992), indicating a predominance of volume

scattering effects on the observed BRDFs (Fig. 3). Both

coefficients are typically larger in the near-infrared than the

visible wavelengths, with the exception of the Snow class.

Finally, the amplitude metrics for the coefficients indicate that,

as expected, classes with greater inter-annual variability also

show greater BRDF coefficient amplitudes.

The derivation of BRDF metrics from the POLDER data

allows an examination of broad global scale bidirectional land

cover patterns both spectrally and temporally. Fig. 4 illustrates

the original concept of a bidirectional or FBRDF coefficient

feature space_ from the POLDER data used for this analysis.

The average Fmaximum k1F coefficient for the POLDER red

band (670 nm) for each land cover class over the eight-month

POLDER archive is plotted against the mean Fmaximum k2_
coefficient for the 865 nm band, allowing an evaluation of

heretofore unexplored patterns of remotely sensed data.

Following the same general concepts of traditional red versus

near infrared scatterplots for multi-spectral feature space, or

maximum yearly NDVI versus mean annual NDVI for temporal

feature space (DeFries et al., 1998), the BRDF feature space

depicts the relationships between volumetric scattering ( y axis

on Fig. 4) and geometric scattering (x axis) for the different land

cover types, and particularly as a function of surface structure.

We note that, while there is substantial overlap between all

classes in Fig. 4, these BRDF scatterplots still suggest that there

are broad patterns related to surface structure and land cover in
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POLDER band is plotted on the x axis with increasing geometric scattering

effects from left to right. The mean Fmaximum k2_ metric for the 865 nm

POLDER band is plotted on the y axis, indicating larger volumetric scattering
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the BRDF coefficients, and that this information is different

from the information contained in either spectral or temporal

feature space. The plots also indicate the potential for this

information to aid the discrimination of particular cover types at

the global scale. In particular, we note the potential for

improved separation for classes such as Grasslands, Evergreen

Broadleaf Forests, Wetlands, and Closed Shrublands based on

their positions in BRDF feature space compared to other land

cover classes. We should also note that we have plotted a red

spectral band against a near-infrared band in Fig. 4 to highlight

the fact that the BRDF space is also multi-spectral. Further, this

BRDF space also varies seasonally implying that much works

remains to fully understand all of the potential land cover

information available in the surface BRDF. Of course, not all

BRDF layers are expected to be independent from each other so

the issues of the correlation of these additional data will also

need to be further examined.

4.2. Classification of global scale POLDER data

The potential benefits of BRDF coefficients from POLDER

for global land cover classifications were evaluated by running

the C5.0 decision tree with only the NDVI and spectral albedo

metrics, and then with these same metrics in addition to all 32

BRDF metrics. C5.0 was run in a boosted mode and results

were examined for 20 different random samples of training and

testing samples. Table 2 shows the mean accuracies for all 20

trees for each data set.

For the twenty 50% testing samples using only the NDVI

and albedos, the overall accuracy is 81.90% (T0.24) with a

range of values from 81.40% to 82.40%. For these same

metrics, the average accuracy for the 20 training samples is

91.20% (T0.18), results whose mean values and stability agree

quite well with those obtained with AVHRR data (Brown de

Colstoun, 2001; DeFries et al., 1998).

When using the BRDF metrics with the other metrics, the

mean accuracy for the testing samples improves to 85.05%

(T0.34), for a mean improvement of 3.15% (T0.29). The

accuracies for the testing samples range from 84% to 85.5%,

with the mean differences between the two data sets ranging

from a minimum of 2.6% to a maximum of 3.7%. The mean

accuracy for the training sets is 95.31% (T0.22), for a mean

improvement of 4.11% (T0.29).
While the gains in terms of overall classification accuracies

are modest, considering that 32 additional layers were included

in the BRDF classification, it is useful to examine these gains

rather as a reduction of error or confusion of the classification.



Table 4

Same as Table 3 but for mean user’s accuracies

IGBP class User’s accuracy

No BRDF BRDF Difference

1) ENeF 68.43% (T1.73) 74.00% (T1.74) 5.57% (T1.83)
2) EBrF 84.64% (T0.75) 91.34% (T0.66) 6.70% (T1.22)

3) DNeF 74.88% (T1.84) 75.15% (T1.97) 0.27% (T2.17)

4) DBrF 82.40% (T0.94) 87.89% (T1.26) 5.49% (T1.28)
5) MixF 69.14% (T1.60) 73.89% (T1.51) 4.75% (T1.85)

6) ClSh 82.74% (T1.56) 84.24% (T1.92) 1.50% (T1.51)

7) OpSh 88.59% (T1.17) 90.11% (T0.90) 1.52% (T1.37)

8) WSav 65.97% (T1.29) 70.64% (T0.93) 4.67% (T1.15)
9) Savn 76.67% (T1.90) 79.48% (T2.18) 2.83% (T2.37)

10) Grass 84.16% (T0.86) 85.41% (T1.08) 1.25% (T1.41)

11) Wtld 74.93% (T3.41) 80.04% (T2.76) 5.12% (T3.51)

12) Crop 83.53% (T0.53) 85.84% (T0.78) 2.30% (T0.58)
13) Urbn 78.07% (T7.04) 85.49% (T5.95) 7.42% (T7.83)

15) Snow 90.80% (T2.17) 91.62% (T1.00) 0.82% (T1.70)

16) Bare 96.58% (T0.63) 97.52% (T0.59) 0.94% (T0.37)
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Taking this point of view, the error reduction when using the

BRDF metrics is 17%. It is also useful to examine the per class

user’s and producer’s accuracies to determine whether partic-

ular classes may benefit more than others from the inclusion of

the BRDF metrics. Tables 3 and 4 show the mean producer’s

and user’s accuracies for the 20 trees, respectively.

Table 3 shows that the greatest increases of producer’s

accuracy are for the Grasslands class, with an 8.71% (T1.03)
improvement, the Wetlands class (8.02% T4.7), and the Urban

class (7.82% T3.22). The increases seen for both the Wetlands

and Urban classes, however, must be evaluated against much

larger standard deviations, indicating that the results for these

classes may not always be stable. Increases on the order of 4%

to 5% are encountered for the Deciduous Broadleaf and Mixed

Forest classes, the Closed Shrublands category, and the Woody

Savanna class. For the mean user’s accuracies, the largest mean

increase is found for the Urban class but with a standard

deviation greater than the mean value. Substantial improve-

ment is seen in the user’s accuracies for the Evergreen

Needleleaf, Evergreen Broadleaf, Deciduous Broadleaf, and

Mixed Forests classes, and the Woody Savannas and Wetlands

classes, all with mean increases near, or greater than, 5%.

These results indicate that the inclusion of BRDF coefficients

in the classification can reduce the confusion between several

land cover classes and thus improve both the user’s and

producer’s accuracies. This improvement is seen across all land

cover classes for the classifications performed here.

Closer examination of the error matrices for BRDF and non-

BRDF classifications reveals that the principal differences

between the two classification approaches are as follows: (1)

there is much less confusion between all of the forest classes

and the Woody Savanna class, and in particular between the

Evergreen Broadleaf Forest class and the Woody Savanna class

when using the BRDF coefficients. (2) There are some minor

reductions in the confusion between the different forest classes,

as well as between similar classes such as Closed and Open
Table 3

Mean producer’s accuracies for 20 trees using no BRDF metrics and using 32

additional BRDF metrics from POLDER

IGBP class Producer’s accuracy

No BRDF BRDF Difference

1) ENeF 62.48% (T1.31) 65.68% (T1.73) 3.19% (T1.69)

2) EBrF 93.81% (T0.41) 96.54% (T0.29) 2.73% (T0.42)
3) DNeF 78.69% (T2.97) 79.15% (T2.77) 0.46% (T3.59)

4) DBrF 76.11% (T1.21) 79.56% (T1.07) 3.46% (T1.22)

5) MixF 63.43% (T1.38) 67.53% (T1.49) 4.10% (T1.68)

6) ClSh 71.28% (T3.01) 76.14% (T2.32) 4.86% (T2.50)
7) OpSh 90.20% (T1.05) 91.28% (T1.02) 1.08% (T1.30)

8) WSav 71.51% (T0.97) 77.37% (T0.90) 5.85% (T1.21)

9) Savn 52.26% (T1.77) 54.36% (T2.03) 2.10% (T1.26)

10) Grass 76.01% (T1.24) 84.73% (T0.94) 8.71% (T1.03)
11) Wtld 55.96% (T3.19) 63.78% (T2.48) 7.82% (T3.22)

12) Crop 93.64% (T0.54) 94.20% (T0.58) 0.56% (T0.55)

13) Urbn 31.54% (T3.92) 39.55% (T4.94) 8.02% (T4.70)

15) Snow 98.31% (T0.78) 98.64% (T0.57) 0.33% (T0.74)
16) Bare 97.91% (T0.51) 98.48% (T0.37) 0.57% (T0.37)

Mean differences between the two data sets are also shown. Standard deviations

for the 20 samples are given in parentheses for all mean values.
Shrublands. (3) There is a substantial reduction in the

confusion between the Grasslands and Croplands classes. (4)

The improvement for the Urban class is because of less

confusion with the Croplands class but this represents a small

number of pixels. Finally, the improvements seen for the

Wetlands class come from a reduction in the confusion of this

class with all of the different forest cover types. Smaller

differences are found elsewhere.

5. Conclusions

The analyses conducted here indicate that the POLDER

instrument provides the data required to study coarse BRDF

patterns at the continental to global scales. Because of its

unique sampling geometry, it is able to capture elements of the

surface BRDF that are simply not available from cross-track

scanners such as the AVHRR. The data from POLDER are also

able to capture the broad features of the BRDF in multiple

spectral bands and over time. Further, the eight-month archive

of POLDER data is sufficient to allow the utilization of these

seasonal BRDF patterns for the study of land cover.

The use of semi-empirical BRDF models (Roujean et al.,

1992) with POLDER data allows the salient features of the

surface BRDF for most cover types to be adequately described

in an efficient manner, while retaining a physical meaning in

most cases. The coefficients of the Roujean et al. (1992) model

are able to describe the general importance of geometric and

volumetric scattering effects for many cover types, with the

broad patterns seen here concurring with patterns seen in field

data and other global POLDER analyses (Bicheron & Leroy,

2000; Roujean et al., 1992). It is evident from the data analyzed

here that the volumetric component of the BRDF is much more

important than the geometric component for all cover types at

this spatial scale. At the spatial scale of several kilometers of

the POLDER global data, it is possible that the geometric

structure of many canopies, such as trees and shrubs, and the

shadowing that these features introduce, is much less impor-

tant, and that the surface is much more of a turbid medium than

at a finer scale. The broad variations seen in the k1 coefficient



E.C. Brown de Colstoun, C.L. Walthall / Remote Sensing of Environment 100 (2006) 474–485484
indicate that, even at this spatial scale, some information about

the surface structure is still present.

The production of BRDF metrics from the POLDER data

allows an investigation of the potential land cover specific

information of the BRDF. This research finds that the patterns

described by these metrics, even with a large amount of overlap

between most classes, still contain information that is useful for

land cover discrimination. By examining the feature space of

the different BRDF metrics this information can be determined

qualitatively. These Fcoefficient feature space_ plots indicate

that the coarse scale BRDF coefficients from POLDER provide

land cover information that is different from the spectral and

temporal information, and is useful for land cover separation.

Whether this information is actually completely independent

from the spectral and temporal information is not yet known.

Moreover, the actual independence of all the BRDF metrics

from each other is an issue that merits further attention both in

terms of potential data reduction but also future improvements.

Finally, the use of the POLDER BRDF metrics within a

decision tree classifier shows that the metrics can reduce the

overall errors of global land cover classifications. The metrics

are shown to reduce the confusion between large core classes

such as forests and Woody Savannas, for example. Further, the

metrics can reduce the confusion between classes that show

substantial confusion in spectral and temporal space such as

Grasslands and Croplands, and increase the accuracy for such

important classes such as Grasslands and Woody Savannas.

The metrics also appear to contain information that allows a

better classification of classes such as Wetlands and Urban

areas. It is suggested that this approach may easily be

applicable to multi-directional data currently available from

MISR or future POLDER-like sensors. However, future

analyses must attempt to better separate the variability

introduced in the BRDF patterns by sensor and data processing

errors from the natural inter- and intra-class variability of the

BRDF for the different cover types. With potential improve-

ments in the quality of the BRDF metrics used in the

classification, it may be possible to provide improvements to

global land cover accuracies beyond those seen here.
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Spatiales (CNES) in Toulouse, France. The MSPHINX

software used to reproject the POLDER data was developed

by L. Gonzalez and C. Deroo at the Laboratoire d’Optique

Atmospherique at the Université de Lille, France.
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surface parameters from airborne POLDER BRDF during HAPEX-Sahel.

Journal of Geophysical Research, 102, 11201–11218.

Safavian, S. R., & Landgrebe, D. (1991). A survey of decision tree classifier

methodology. IEEE Transactions on Systems, Man, and Cybernetics, 21,

660–674.

Scepan, J. (1999). Thematic validation of high-resolution global land-

cover data sets. Photogrammetric Engineering and Remote Sensing, 65,

1051–1060.

Sellers, P. J., Los, S. O., Tucker, C. J., Justice, C. O., Dazlich, D. A., Collatz, G.

J., et al. (1996). A revised land surface parameterization (SiB2) for

atmospheric GCMs: Part II. The generation of global fields of terrestrial

biophysical parameters from satellite data. Journal of Climate, 9, 706–737.

Strahler, A.H. et al. (1999). MODIS Land Cover Product: Algorithm

Theoretical Basis Document, Version 5.0. Available from World Wide

Web Site: http://spso.gsfc.nasa.gov/atbd/modistables.html

Townshend, J. R. G., Justice, C. O., Skole, D., Malingreau, J. -P., Cihlar, J.,

Teillet, P., et al. (1994). The 1 km resolution global data set: Needs of the

International Geosphere Biosphere Programme. International Journal of

Remote Sensing, 15, 3417–3442.

Vanderbilt, V. C., Perry, G. L., Steam, J. A., Ustin, S. L., Diaz Barrios, M. C.,

Zedler, S., et al. (1997). Discrimination of wetland and non-wetland

community types with multi-spectral, multi-angle, polarized POLDER data.

In G. Guyot & T. Phulpin (Eds.), Proceedings of the Seventh International

Symposium on Physical Measurements and Signatures in Remote Sensing

(pp. 47–49). Courchevel, France, London’ Taylor and Francis.

Verhoef, W. (1984). Light scattering by leaf layers with application to canopy

reflectance modeling: The SAIL model. Remote Sensing of Environment,

16, 125–141.

Walthall, C. L. (1997). A study of reflectance anisotropy and canopy structure.

Remote Sensing of Environment, 61, 118–128.

Walthall, C. L. & Brown de Colstoun, E. C. (1997), Medium altitude

bidirectional imaging spectroradiometer measurements over the HAPEX-

Sahel west central super site using the advanced solid-state array spectro-

radiometer (ASAS), In P., Kabat, S. D., Prince & L., Prihodko (Eds.),

HAPEX Sahel west central supersite: Methods, measurements and selected

results, Report 130, DLO Winand Staring Centre, Wageningen, The

Netherlands.

Walthall, C. L., Norman, J. M., Welles, J. M., Campbell, G., & Blad, B. L.

(1985). Simple equation to approximate the bidirectional reflectance from

vegetative canopies and bare soil surfaces. Applied Optics, 14, 383–387.

Weiss, S. M., & Kulikowski, C. A. (1991). Computer systems that learn. San

Mateo’ Morgan Kaufman Publishers.

Wu, A., Li, Z., & Cihlar, J. (1995). Effects of land cover type and greenness on

advanced very high resolution radiometer bidirectional reflectances:

Analysis and removal. Journal of Geophysical Research, 100, 9179–9192.

http://spso.gsfc.nasa.gov/atbd/modistables.html

	Improving global scale land cover classifications with multi-directional POLDER data and a decision tree classifier
	Introduction
	Background
	Global land cover classifications and decision trees
	Exploitation of BRDF information

	Data and methods
	POLDER instrument and data processing
	Roujean et al. (1992) BRDF model
	Global scale training data and derivation of BRDF metrics
	C5.0 decision tree classifier

	Results and discussion
	Analysis of global scale BRDF model coefficients
	Classification of global scale POLDER data

	Conclusions
	Acknowledgements
	References


